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Abstract. We discuss a geometrical interpretation of the Z-invariant Ising model in terms of isoradial
embeddings of planar lattices. The Z-invariant Ising model can be defined on an arbitrary planar lattice
if and only if certain paths on the lattice edges do not intersect each other more than once or self-
intersect. This topological constraint is equivalent to the existence of isoradial embeddings of the lattice.
Such embeddings are characterized by angles which can be related to the model coupling constants in
the spirit of Baxter’s geometrical solution. The Ising model on isoradial embeddings studied recently by
several authors in the context of discrete holomorphy corresponds to the critical point of this particular
Z-invariant Ising model.

PACS. 75.10.Hk Classical spin models

1 Introduction

One of the most interesting settings in which the two
dimensional Ising model is exactly solvable is obtained
when the model is invariant under star-triangle deforma-
tions of the lattice structure. This model was introduced
by Baxter [1,2] and is known in the literature as the
Z-invariant Ising model.

Recently the Ising model on a certain class of planar
lattices, those with isoradial embeddings as defined bellow,
has attracted attention in connection with the concept of
discrete holomorphy [3–5]. Mercat [3] conjectured a criti-
cality condition and Kenyon [6] showed that the restricted
model is solvable. In this paper we will prove the critical-
ity conjecture and bring these results into perspective by
showing that the Ising model considered by these authors
is the restriction to the critical point of a Z-invariant Ising
model. We will show that isoradial embeddings provide a
geometrical interpretation of the Z-invariant Ising model
which generalizes the model’s geometrical solution [2] in
terms of angles characterizing straight rapidity lines.

In the seminal work of Baxter [2] the Z-invariant Ising
model is defined on planar graphs or ‘lattices’ G, which
are defined using an associated rapidity lattice Gs of planar
intersecting straight lines such that no three lines inter-
sect at a point. These lattices Gs can be colored with two
colors in such a way that same color faces do not share
edges. The Z-invariant Ising model is defined on the lat-
tice G with vertices on one of the colored subset of faces
and edges connecting neighboring same color faces which
share a vertex, for an example see of Figure 1. The model
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Fig. 1. An example of Baxter’s straight line lattice Gs, shown
in dashed line, with each line having an associated rapidity αi.
A Z-invariant Ising model can be defined on the resulting lat-
tice G, shown in full lines.

coupling constants are determined by parameters, called
the rapidities, associated with the straight lines in Gs.

In this paper we will address the converse problem.
Namely, given an arbitrary planar lattice G, defined with-
out reference to a rapidity lattice, is it possible to assign
coupling constants to its edges in such a away that the
Ising model on G is Z-invariant? This problem has been
considered previously in the context of quasi-crystals [7,8],
by using either the de Bruijn grid method [9] or problem
specific rapidity line choices [10]. For general planar lat-
tices we will show in Section 3 that a Z-invariant Ising
model can be defined if and only if the lattice satisfies a
certain topological property: that zig-zag paths on the lat-
tice edges, this is paths which alternately turn maximally
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Fig. 2. An arbitrary planar lattice G and the two zig-zag
paths which intersect at the edge [ij]. Zig-zag paths on a planar
lattice turn alternately maximally right and left and are said
to intersect when share a common edge.

left and right (see Fig. 2), do not intersect each other more
than once or self-intersect. If this condition is satisfied a
Z-invariant Ising model can be defined using rapidity lines
in one to one correspondence with the zig-zag paths.

Zig-zag paths are closely related to de Bruijn’s [9] con-
cept of skeleton of a parallelogram tilling and have re-
cently been used by Kenyon and Schlenker [11] to discuss
the existence of isoradial embeddings of planar lattices. A
strictly convex isoradial embedding of a planar lattice is
a particularly symmetric drawing of the lattice such that
every vertex is at unit distance from the center of the faces
to which it belongs. For instance Figure 3 would be an iso-
radial embedding of the lattice shown if drawn in such a
way that all edges in dotted line have equal unit length.
These embeddings are particularly useful in the context
of discrete holomorphy [3–5], where the isoradiality con-
dition allows the definition of discrete analytic functions.

The intersection properties that we need to impose on
the zig-zag paths of a planar lattice, to be able to define
a Z-invariant Ising model, are equivalent [11] to the exis-
tence of isoradial embeddings of that lattice. Therefore a
Z-invariant Ising model can defined on a planar lattice G
if and only if G has isoradial embeddings.

This result can better understood by considering a ge-
ometric interpretation of the model. In Section 5 we will
show that a Z-invariant Ising model, with non-vanishing
ferromagnetic couplings, on a planar lattice defines an iso-
radial embedding of the lattice which is characterized by
a set of geometric angles determined by the model’s cou-
pling constant at criticality. This geometric interpretation
is closely related with Baxter’s geometric solution [2] dif-
fering only in the fact that the angles involved character-
ize the embedding of the lattice and not the rapidity lines
themselves, which need not to be embedded in the plane
as straight lines.

The reverse statement is also true, given an isora-
dial embedding of a lattice one can always define a
Z-invariant Ising model on that lattice using the geometric
angles characterizing the embedding and an elliptic func-
tion parameterization [2] of the coupling constants. The

Fig. 3. The lattice of Figure 2 and the corresponding diamond
graph G♦ as defined in Section 2. The vertices of G are shown
as circles and the vertices of the dual lattice G∗ are shown as
squares. The edges of G♦ are shown in doted line. The rapidity
lines of G are paths on the dual of G♦ which are contained on
a sequence of faces without turns. Three such rapidity lines
are shown including the two associated with the represented
zig-zag paths.

Ising model on isoradial embeddings considered in refer-
ences [3,6] is the restriction to the critical point of such
a Z-invariant Ising model. Its critical point coupling con-
stants Jc

ij can be expressed in terms of the respective edge
length Lij on the isoradial embedding of the lattice,

cosh 2Jc
ij =

2
Lij

. (1)

This relation between coupling constants and geometry
has been found previously in the study of geometric prop-
erties of regular lattices at criticality, as effective angles of
the corner magnetization [12] and shape dependent mod-
ular parameters [13–16], suggesting that the geometric
interpretation reflects an important aspect of the Ising
model critical behavior.

The paper is organized as follows:
In Section 2 we introduce the rapidity lattice G and

the diamond lattice G♦ associated with an arbitrary pla-
nar lattice G. In Sections 3 and 4 the basic results of the
Z-invariant Ising model are revisited in an embedding in-
dependent way. In Section 5 we discuss the geometrical
interpretation of the model. Finally in Section 6 our con-
clusions are presented.

2 The rapidity lattice

The rapidity lattice, also known in the mathematical lit-
erature as the medial graph, plays a central role in the
definition of the Z-invariant Ising model. In order to de-
fine the rapidity lattice G associated with a given planar
lattice G it is convenient to first introduce the diamond
lattice of G, denoted by G♦. The diamond lattice [3] has as
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vertices the vertices of G and the vertices of the dual lat-
tice G∗ and has edges connecting each vertex of G to the
vertices of G∗ corresponding to its neighboring faces, an
example is shown in Figure 3. The faces of G♦ are quadri-
lateral and surround an edge of G and the corresponding
dual edge in G∗.

A zig-zag path on the edges of G, turning alternately
maximally left and right, corresponds to a path of alter-
nating diagonals on a sequence of quadrilateral faces of
G♦ in which each face connects with its two neighboring
faces by two opposite edges, see Figure 3. To each zig-zag
path we associate a rapidity line, defined as the path in
the dual of G♦ which is contained by the corresponding
sequence of faces. In the example of Figure 3 three such
rapidity lines are shown. Each edge of G has two associ-
ated rapidity lines in one to one correspondence with the
two zig-zag paths which intersect at that edge.

The rapidity lattice G associated with the planar lat-
tice G is formed by all the rapidity lines defined in this
way. In general G is not embedded in the plane as a set
of straight lines. The calligraphic type is a reminder that
we are not interested in G as lattice or as an embedding
of a lattice in the plane but as a set of intersecting curves
each with an associated free parameter, the respective ra-
pidity. In Section 5 a geometrical interpretation of this set
will be given, we will see that under mild restrictions the
intersection pattern of G together with its rapidities is a
complete description of an isoradial embedding of G in
the plane. An isoradial embedding of G, in which all its
vertices are at unit length from the neighboring vertices of
G∗, corresponds to a rhombic embedding of G♦ in which
all the lattice faces are rhombi of unit edge length.

3 Z-invariance

Given an arbitrary planar lattice G, the associated rapid-
ity lattice G can always be constructed using the procedure
of the previous section. However a Z-invariant Ising model
can be defined on G only if the rapidity lines satisfy certain
additional topological properties. In this section we review
the Z-invariant Ising model in an embedding independent
way suitable for the discussion of these properties.

The Ising model on an arbitrary planar lattice is de-
fined in the usual way, by assigning a spin σi = ±1 to each
vertex i and a coupling constant Jij to the edge connect-
ing the vertices i and j. The model partition function is
defined as

Z =
∑

[σ]

exp

⎛

⎝
∑

〈ij〉
Jij σiσj

⎞

⎠. (2)

The model is said to be Z-invariant [2] if a star-triangle
deformation of the lattice, as shown in Figure 4, changes
the partition function only by a multiplicative constant
Zstar = R Ztriangle with R being determined by the local
coupling constants.

Z-invariance places stringent conditions on the model
coupling constants which can however be solved [17] by
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Fig. 4. The star-triangle transformation on the edges of G. The
quadrilateral faces of G♦ and the three rapidity lines involved
are also shown.

Table 1. Parameterization of the coupling constants J and
related quantities in terms of elliptic functions of modulus k,

as given in reference [2]. The conjugate modulus k′ = (1−k2)
1
2 ,

the complete elliptic integrals K, K′ and the elliptic functions
sn(u), cn(u), dn(u), H(u) ,H1(u), Θ(u) and Θ1(u) are defined
in the usual way [18].

Regime I Regime II Regime III

Ω 1/k′ k′ ik′/k

sinh 2J(α)
sn(α)
cn(α)

k′ sn(α)
cn(α)

ik′ sn(α)
dn(α)

λ K K K − iK′

q(α) Θ1(α) Θ(α) Θ(α)

r(α)
dn(α)

sn(α)cn(α)
dn(α)

sn(α)cn(α)
cn(α)

sn(α)dn(α)

c k2K′
π

− k2K′
π

−K′
π

introducing a parameterization in terms of elliptic func-
tions of modulus k with 0 < k < 1. Following reference [2]
the coupling constants are parameterized in terms of an
edge dependent argument Jij = J(τij) accordingly with
Table 1, by choosing a regime and a modulus k. The corre-
sponding Ising model is Z-invariant if the edge arguments
τij satisfy the following conditions throughout the lattice

the sum of the edge arguments around a vertex is 2λ,

the sum of the edge arguments in the boundary (3)
of a m-sided face is (m − 2)λ

with the multiplicative constant being, for the vertex la-
beling of Figure 4,

R =
(

2Ω2

sinh 2Jij sinh 2Jjk sinh 2Jki

) 1
2

. (4)

For a straight line rapidity lattice it has been shown [2]
that the conditions (3) are satisfied for edge arguments
determined by the difference of the rapidities on the two
straight lines crossing each edge. This result is expected
not to depend on the particular embedding of the rapidity
lines in the plane but only on their topological properties.
We will show that the straight line requirement can be
relaxed and that the only condition we need to impose on
the rapidity lines is that they do not intersect each other
more than once or self-intersect.
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Fig. 5. The two possible relative orientations of an edge of
G and its two rapidity lines and the corresponding edge argu-
ments. The dotted line is the reference rapidity line.

Using oriented rapidity lines [19] the argument τij at
the edge [ij] is chosen, in an embedding independent way,
according to the orientation of the edge relatively to the
two rapidity lines crossing it. For un-oriented edges there
are two possible orientations, shown in Figure 5, and the
corresponding edge arguments are chosen to be

τij =

{
β − α for orientation a)
λ + α − β for orientation b),

(5)

where α and β are the rapidities of the two rapidity lines
involved.

This choice of edge arguments satisfies the condi-
tions (3) everywhere on the lattice provided that the ra-
pidity lines do not intersect each other more than once or
self-intersect. This result can be argued as follows.

As in reference [1] we assume that there a rapidity
line α0 which is crossed by all other rapidity lines αi for
i > 0. The rapidity lines are oriented is such a way that
if we look along the orientation of α0 the rapidity lines αi

cross α0 from right to left. We assume also that the lattice
G is formed by the intersection of the rapidity lines αi after
they cross the reference line α0. These assumptions do not
place any restriction on the lattice G.

Consider a face of G surrounding a vertex of either G
or G∗ and let its boundary edges be oriented as the respec-
tive rapidity lines. For our choice of rapidity lines orien-
tations it follows that all the boundary edges are oriented
away from one of the boundary vertices and towards a sec-
ond one, represented in the examples of Figure 6 by the
downward and upward triangle respectively. We will call
such an orientation of the boundary edges standard.

Non-standard orientations are not allowed by the re-
striction that the rapidity lines do not intersect each other
more than once or self-intersect. Consider for instance a
face of G formed by the intersection of five rapidity lines,
with the boundary edges oriented as shown in Figure 7.
Each rapidity line crosses the reference line α0, intersects
two or more other rapidity lines and moves towards in-
finity or to the boundary of a compact region enclosing
the lattice G. Given the first rapidity line α1, subsequent
rapidity lines will have to intersect α0 to the left of α1 to
avoid double-intersections and self-intersections. This can
be done for all lines except the last one, α5, which should
cross α0 at some point P ′ or P ′′ and then reach some
distant point Q′. Neither of these two requirements can

Fig. 6. Standard orientations of the rapidity lines on the faces
of G surrounding vertices of G and G∗, shown using the nota-
tion of Figure 3. The boundary edges are oriented away from
a vertex in the boundary and towards a second one, denoted
by the downward and upward triangles respectively.

α3 α2
α4 α1

α0

P’P’’

Q
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Fig. 7. A face of G with a non-standard orientation of the
boundary edges. The rapidity curve α5 cannot be completed
by joining points P with either P ′ or P ′′ and Q with Q′ without
multiple intersections or self-intersection, which by assumption
are not allowed.

be met without α5 crossing more than once α1 or α4 or
self-intersecting and this non-standard orientation is not
allowed. A similar argument can be made against orienta-
tions with more than one boundary vertex for which the
boundary edges converge or diverge.

The reader can verify that for the standard orienta-
tions of G the edge arguments defined by (5) satisfy the
conditions (3) everywhere in the lattice and the resulting
Ising model is Z-invariant. If the rapidity lines, or equiv-
alently the lattice zig-zag paths, are allowed to intersect
each other more than once or self-intersect, then the con-
ditions (3) will not in general be satisfied and a Z-invariant
Ising model cannot be defined.

4 Thermodynamic properties

Using the standard arguments of Z-invariance [1,2] the
partition function, for real positive coupling constants,
can be evaluated in the thermodynamic limit of the lat-
tice G. For completeness we reproduce here these results.
The partition function is given by [2]

Z = (4Ω)
1
4 N exp

⎛

⎝
∑

〈ij〉
φ(τij)

⎞

⎠ (6)
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where N is the number of vertices on the lattice and

φ(τ) =
1
2
cτ +

∫ τ

0

r(x)
(

x

2K
+

K ′

π

q′(x)
q(x)

)
dx (7)

with the various quantities being defined in Table 1 for
the three distinct regimes.

The local magnetization can also be evaluated [2] and
is found to be, for any spin on the lattice,

〈σi〉 =

{
(1 − Ω−2)1/8 for Ω2 > 1
0 for Ω2 ≤ 1.

(8)

The regime I corresponds therefore to a low temperature
ordered phase, while regimes II and III correspond to high
temperature disordered phases. A phase transition occurs
between regime I and II for Ω = 1.

5 Geometric interpretation at criticality

The intersection properties that the rapidity lines, or
equivalently the lattice zig-zag paths, need to satisfy in
order to define a Z-invariant Ising model on a given pla-
nar lattice are equivalent [11] to the existence of isoradial
embeddings of that lattice. In this section we will establish
this relation between the Z-invariant model and isoradial
embeddings by considering a geometric realization of the
model.

At criticality the elliptic modulus k is zero, the com-
plete elliptic integral λ becomes π/2 and the coupling
constants, see Table 1, are parameterized by elementary
trigonometric functions

sinh 2Jij = tan τij . (9)

For non-vanishing ferromagnetic coupling constants with
edge arguments in the interval 0<τij <π/2 the condi-
tions (3) can be written in terms of geometric half-angles
τij = θij/2 as

∑
θij = 2π around each vertex of G (10)

∑
(π − θij) = 2π around each face of G

where the sums are respectively over all edges which meet
at a given vertex of G and over all edges in the boundary
of a given face of G.

A set of angles satisfying these conditions characterizes
a rhombic embedding of G♦, in which its quadrilateral
faces are drawn in the plane as rhombi with unit edge
length. The angle θij is the inner angle of the rhombic
face which surrounds the edge [ij], see Figure 8 for an
example. The equations (10) guarantee that the rhombi
can be joined together, at the vertices of G and G∗, in a
consistent way without overlapping.

In such a rhombic embedding the edges of G♦ crossed
by a given rapidity line are parallel and we can associated
to each rapidity line an angle characterizing this direc-
tion. Any rhombic embedding of G♦ is in fact completely
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G
β
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i
π− θ

ijθ ij

θ

θ

α

Fig. 8. An isoradial embedding of a lattice G represented to-
gether with its dual G∗, the diamond lattice G♦ and the ra-
pidity lattice G. Each edge of G has an associated rhombic
angle. The angle associated to each rapidity line characterizes
the common direction of all edges of G♦ intersected by it.

characterized [9] by the intersection pattern of G, which
determines the relative positions of the rhombi, and the di-
rection of the edges crossed by each rapidity line. The con-
dition that the rapidity lines do not intersect each other
more than once, or self-intersect, is a consistency condi-
tion needed to ensure that all interior rhombic angles are
positive.

The embedding of G associated with a rhombic em-
bedding of G♦ is a strictly convex isoradial embedding.
Therefore if a Z-invariant Ising model can be defined on
a given lattice that lattice admits isoradial embeddings in
the plane. A set of critical edge parameters in the interval
0 < τij < π/2 can always be obtained by assigning angles
to the rapidity lines in the range ]0, π[ which increase rel-
atively to the order of intersection of the rapidity lines αi

with the reference line α0.
The reverse statement is also true, if a planar lattice

G has an isoradial embedding in the plane then we can
define a Z-invariant Ising model in G. This follows from
the fact that zig-zag paths on an isoradial embedding do
not intersect each other more than once or self-intersect.
The corresponding Z-invariant Ising model can be defined
with edge parameters determined by the rhombic angles of
the embedding τij = λθij/π. From (9) it follows that the
model coupling constants at criticality can be expressed
in terms of the respective edges lengths according to equa-
tion (1). The Z-invariant Ising model with such coupling
constants is similar to the geometrical model pointed out
by Baxter [1,2], the only distinction being that the an-
gles associated to the rapidity lines characterizes not the
rapidity lines themselves but the parallel edges of G♦
crossed by them. The restriction to the critical point of
this Z-invariant Ising model is precisely the Ising model
considered by the authors of references [3,6] in the context
of discrete holomorphy.
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6 Conclusions

In this paper we considered the Z-invariant Ising model
on arbitrary planar lattices introduced without reference
to a straight line rapidity lattice. We have shown that a
Z-invariant model can be defined on such lattices if and
only if the lattice satisfies the topological property that
zig-zag paths do not self-intersect or intersect each other
more than once. The associated rapidity lattice is then
defined with rapidity lines in one to one correspondence
with zig-zag paths.

This topological characterization has the geometric
counterpart of the existence of isoradial embeddings of
the lattice, establishing a close relation between the
Z-invariant Ising model and the geometrical setting used
in the mathematical literature to define discrete versions
of analytic functions [3–5]. Our results can then be stated
in a purely geometric way: a Z-invariant Ising model can
be defined on an arbitrary planar lattice if and only if the
lattice admits isoradial embeddings in the plane.

The Ising model on isoradial embeddings studied in
references [3,6] was shown to correspond to the restric-
tion to the critical point of a particular Z-invariant Ising
model. In this model, similar to Baxter’s geometric solu-
tion, each rapidity line has an associated geometric angle
characterizing the direction of the edges of diamond lattice
G♦ which the rapidity line intersects. The coupling con-
stants of model can be expressed at criticality in terms
of the inverse length of the respective edge on the isora-
dial embedding (1), reproducing the relation between crit-
ical coupling constants and geometry found in studies of
the corner magnetization [12] and shape dependent mod-
ular parameters [13–16] of regular lattices in non-trivial
topologies.

This work was partially supported by the EU network on “Dis-
crete Random Geometry” grant HPRN-CT-1999-00161. The
author profited from many useful discussions with Prof. Barry
McCoy.
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